Review of recent processor evolutions and trends

Sverre Jarp CERN openlab CTO

CERN openlab monthly meeting

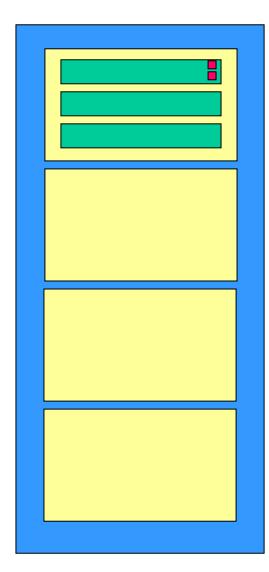
18 September 2007

- Introduction
- Intel Core 2 (Clovertown → Harpertown)
- AMD Quad-core Opteron (Barcelona)
- SUN Ultrasparc T2 (Niagara 2)
- Some software recommendations
- Concluding remarks

Introduction

- In the past, Moore's law was exploited to create a single processor (with a single core) running at maximum speed!
 - Pentium 4 went "quickly" from 1.5 GHz to 3.8 GHz
- Little emphasis on multithreading and performance tuning
 - "Let's just wait for the next speed increase in 6 months!"

Trend brutally stopped by leakage current (i.e. heat)


The new game

- Now, the industry is searching for a "new" sweet spot:
 - Wider execution (via "instruction-level parallelism")
 - Multi-core (sharing nothing or sharing cache)
 - Many-core (sharing fast interconnect)
 - Hardware multithreading
 - N execution states share each execution engine
 - Specialized execution engines
 - Hash/Cipher, Graphics
 - Thinner execution
 - In-order execution
- Redefine sharing
- All at a reasonable frequency
 - Between 1 and 3 GHz

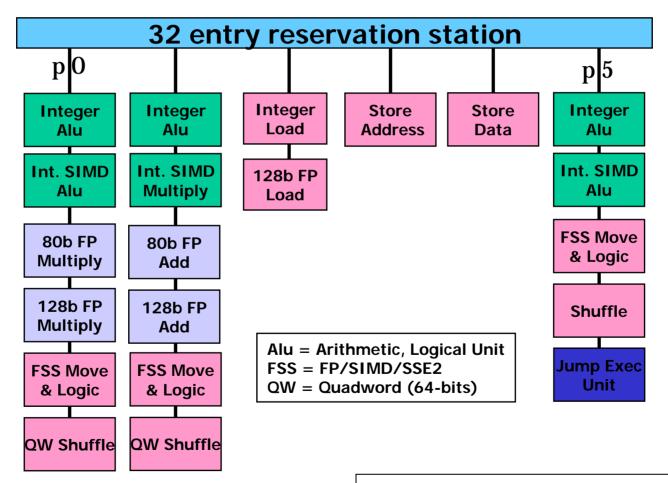
Hierarchy of execution engines **CERN**

- A processor contains cores
- A core contains hardware threads
- A thread owns/shares execution units

Sharing is possible at all levels: -Execution units, -HW threads, -Caches

Processor Review

Intel's current architecture

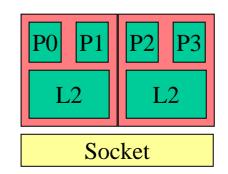

• Intel Core 2 processor (Woodcrest, Clovertown):

- New, wide micro-architecture
 - Netburst completely replaced
- 65 nm now, moving to 45 nm soon
 - "Penryn"-family expected in November; Core 3 a year later
- Relatively high frequency
 - 3 GHz now, maybe somewhat higher in the future
- Reasonable power consumption
 - Although FB-DIMMs add to the total power bill: 10 W/GB
- Quad-core since last year
 - Although purists point out that this is two dual-cores bolted together
 - They work for us!

Intel micro-architecture

• Execution ports in the Core 2 processor:

Issue ports in the Core 2 micro-architecture (from Intel Manual No. 248966-014)


Intel CPU parameters

• Core 2 processor (Clovertown)

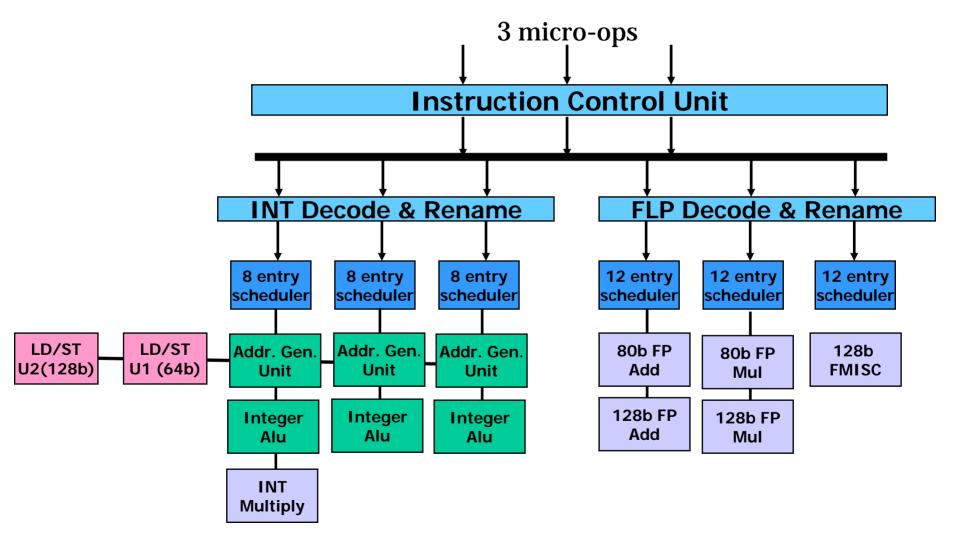
Caches/TLB	Size (total / line)	Access (cycles)	Porting	Associativity (N-ways)
L1I	32 KB / 64 B	-		8
L1D	32 KB / 64 B	3	dual	8
L2 (semi-shared)	2 * 4 MB / 64 B	14		16
ITLB0	128 e.	-		
DTLB0	16 e.	-		4
DTLB1 (4K pages)	256 e.	2		4

Instruction issue	4 * 4 μ-ops
CPU speed	3.0 GHz
Bus speed	1333 * 8 B

AMD's current architecture

• Barcelona processor:

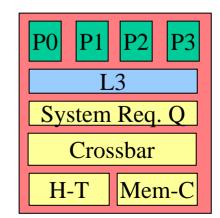
- Opterons feature Integrated Memory Controller and HyperTransport since a long time
- Native Quad core design
- New K10 micro-architecture
- Finally 65 nm technology
 - 45 nm around end-2008/beginning 2009
- 95 W: not so cool; but RDIMMs are cooler than FB-DIMMs
- Three cache levels
 - But L3 is surprisingly small
- "Only" 2 GHz
 - Hoping to ramp up to 2.3/2.5 GHz by YE


• Future processors:

- SSE5 extensions

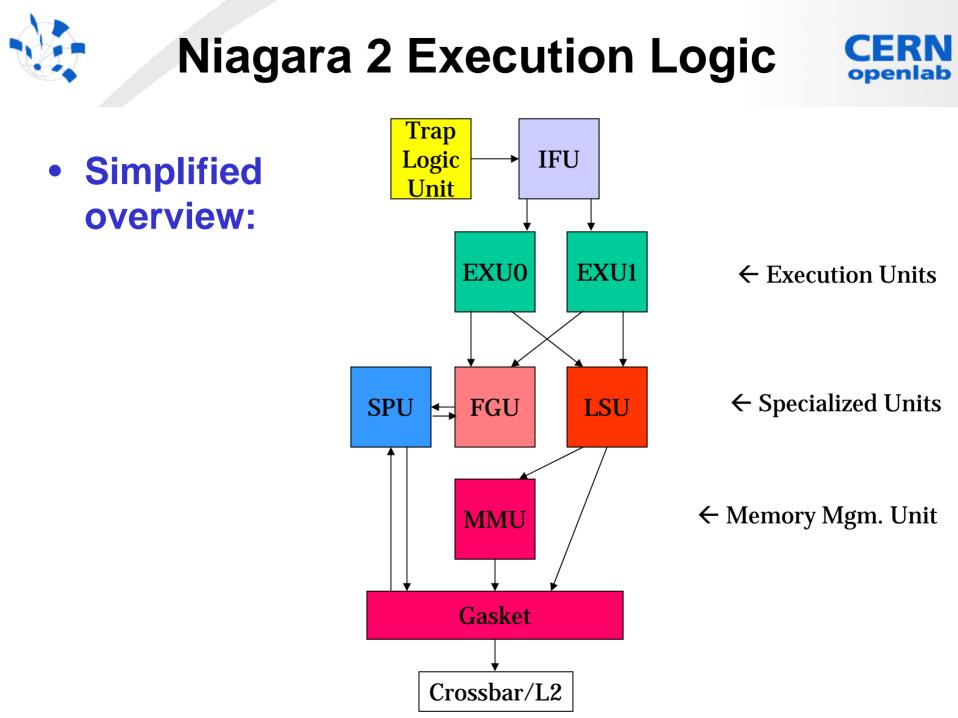
AMD micro-architecture

• Execution units in Barcelona processor:


AMD CPU parameters

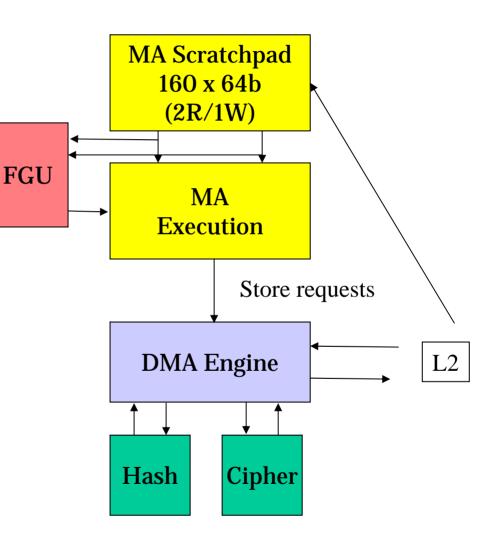
• Barcelona processor:

Caches/TLB	Size (total / line)	Access (cycles)	Porting	Associativity (N-ways)
L1I	64 KB / 64 B			2-way
L1D	64 KB	3	dual	2-way
L2	512 KB	12		-
L3 (shared)	2 MB	<38		-
L1 ITLB	32 e.			fully
L1 DTLB	48 e.			fully


Instruction issue	4 * 3 μ-ops
CPU speed	2.0 GHz
Bus speed	2 * 8 * 667 MB/s
HyperTransport	2 * 8 * 2 GB/s

Sun's "new" architectures

• Niagara 2 processor:


- Evolution from Niagara 1
- Aggressive <u>throughput</u> design
- 65 nm technology (from TI)
- Not yet multi-socket enabled
- Multiple cores and multiple threads
 - 8 x 8
- Power: 70 W
- On-die cross-bar
- Specialized engine
 - Stream Processing Unit
- The "Rock" processor (2008) will also be focused on throughput:
 - 4 cores / 4 blocks (with a FGU) / 2 threads

Stream Processing Unit

- Cryptographic co-processor
- Modular
 Arithmetic Unit:
 - RSA, elliptic curves, etc.
- Cipher/Hash
 - RC4, DES/3DES, AES
 - MD5, SHA

openiab

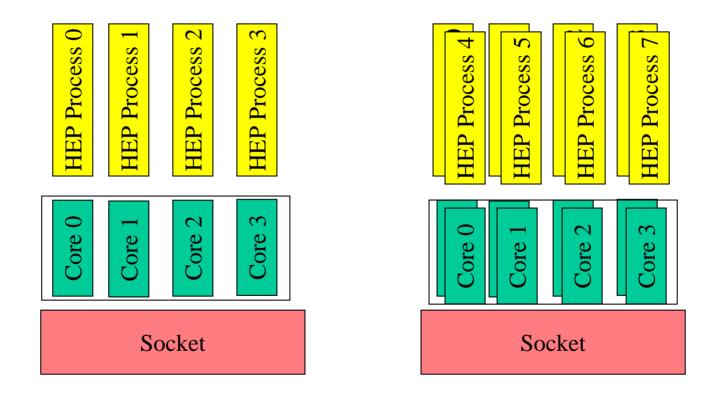
Key CPU parameters

• SUN Ultrasparc T2 processor

Caches/TLB	Size (total / line)	Access (cycles)	Porting	Associativity (N-ways)
L1I	16 KB / 32B			8
L1D	8 KB / 16 B	3	single	4
L2 (8 banks)	4 MB / 64 B	24 - 26		16
ITLB	64 e.			fully
DTLB	128 e.			fully

Instruction issue	8 * 2 ops
CPU speed	1.4 GHz
Bus speed	25.6 (?) GB/s

Software Issues and Recommendations



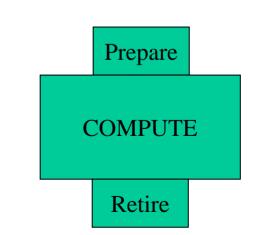
Single threaded processes

• Simply illustrated:

Quad-core

Octo-core or Quad-core w/two-way HW Multithreading (seen by the OS as 8 independent CPUs)

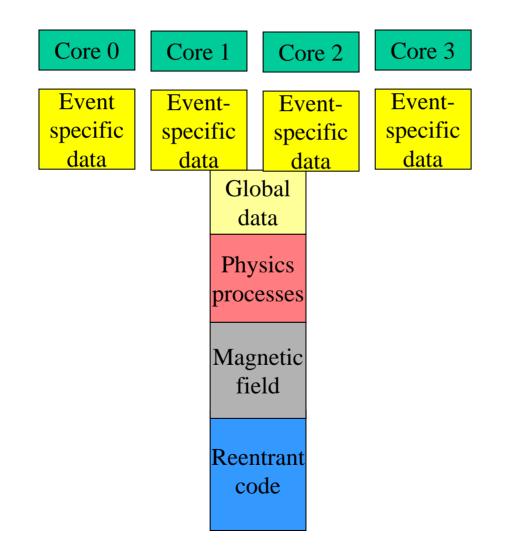
Our memory usage


• An initial preoccupation:

- Today, we need 2 4 GB per single-threaded process.
- In other words, a dual-socket server needs at least:
 - Single core: 4 8 GB
 - Quad core: 16 32 GB
 - Future 16-way CPU: 64 128 GB (!)
 - Future 64-way CPU: 256 512 GB (!!)

1) Increased ILP

- Aim at creating richer "sections", with especially the floating-point contents exposed
- Assist our C++ compilers in making these sections effective**
 - Optimization in all important areas
 - Inlining of "tiny" methods
 - Disambiguation of data pointers/references
 - Minimization of if and switch statements
 - Etc.
 - Optimization of mathematical functions
 - Log, exp, sine, cosine, atan2, etc



2) Multithreading

• Explore new paradigms, for example:

3) Simplify/restructure code

R

BOOT

- Today, our frameworks are very complicated and heavy
 - In one case, we observed 400+ shared libraries
- Make a move à la BOOT?
 - Test coverage of various applications has shown that frequently the 80/20 rule applies:
 - 20% of the code is enough to cover 80% of the (even complex) use cases
- Having a more modular approach would be very beneficial
 - For instance,
 - Quicker porting to assess new hardware
 - Quicker adoption of new paradigms

Conclusions

- Main issue (for manufacturers) is to deploy transistors intelligently
- Main issue (for consumers) is to benefit proportionally
- Some trends are emerging:
 - Increase "uncore" sophistication
 - Crossbars, rings, etc. as interconnects
 - Preserve "fat" cores: 2, 4, 8 with limited multithreading
 - Push thin cores with substantial threading
 - Produce specialized units
 - Cryptography, Graphics, Networking, etc.

The future will be exciting!